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Abstract

The steady states of the master equation are investigated. We give two
expressions for the steady state distribution of the master equation à la the
Zubarev–McLennan steady state distribution, i.e., the exact expression and the
expression near equilibrium. The latter expression obtained looks similar to
that of recent attempts to construct steady state thermodynamics.

PACS numbers: 05.70.Ln, 05.10.Gg

1. Introduction

In daily life, nonequilibrium steady states (NESS) are observed in various situations, such
as electric current, heat conduction, and so on. Usually the linear response theory
(Kubo formula [1]) and Onsager’s reciprocal relation [2] are used to describe the NESS,
i.e., the NESS near equilibrium. Recent advances in experimental aspects need the study of
the NESS far from equilibrium. Thus, the understanding of the NESS is one of the challenges
in nonequilibrium statistical mechanics. However, our knowledge on the NESS has been
limited until the discovery of the fluctuation theorem [3–10]. The fluctuation theorem is not
restricted to near equilibrium. Thus, the fluctuation theorem provides us with some clues to
investigate the NESS for general settings.

In this paper, the NESS of the master equation is investigated. The master equation
describes the number of physical, chemical, biological and even social phenomena. Usually,
the master equation was investigated by the �-expansion [11–14]. Without the use of the
�-expansion, we develop a theory for the NESS of the master equation using the recent
development of the fluctuation theorem. Here, we note that an exact expression for the
NESS has already been obtained by Schnakenberg using the graph theory [15] or by other
authors [16, 17]. However, its expression is not a useful form. We derive an alternative
expression for the NESS. The key relation is the detailed imbalance relation, which is used to
show the fluctuation theorem. Thanks to the detailed imbalance relation; the master equation
is exactly solved, and we obtain the steady state distribution in a similar form to the Zubarev–
McLennan steady state distribution [18, 19]. However, this expression is not convenient to
handle. Therefore, we consider an easier case, i.e., near equilibrium. In [24], for the case near
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equilibrium, a different attempt was given, but its explicit evaluation has not been obtained.
In our treatment, in a linear approximation near equilibrium, a very familiar expression is
obtained, which is, indeed, in the form of the Zubarev–McLennan steady state distribution.
This is done by evaluating the time evolution of the statistical entropy and the distribution
function. Here, it should also be mentioned that the linear approximation used is not the
linear approximation in terms of the degree of nonequilibrium property, such as temperature
difference in the thermal conduction problem, chemical potential difference in the diffusion
problem, and so on. This point will be stressed in the latter section. Compared with the result
on the NESS of the master equation [15, 20], we examine the expression obtained for the
steady state distribution, and compare it with the recent results [21–23].

2. Master equation

The master equation is given by
∂

∂t
P (ω; t) = −

∑
ω′

wωω′P(ω; t) +
∑
ω′

wω′ωP(ω′; t), (1)

where ω = (ω1, ω2, . . . , ωN)t is the discrete variable of the state. P(ω; t) is the probability
distribution that the system is in the state ω at time t. wωω′ is the transition rate that the system
performs a transition from the state ω to the state ω′ in a unit time. By definition, the transition
rates, wωω′ , are non-negative. Equation (1) can be rewritten into the following form [15]:

∂

∂t
P (ω; t) =

∑
ω′

Wω′ωP(ω′; t), (2)

where

Wω′ω = wω′ω − δωω′
∑
ω′′

wωω′′ . (3)

Since the master equation conserves the total probability, the transition rates Wωω′ satisfy the
following condition:∑

ω′
Wωω′ = 0. (4)

This relation can be confirmed directly. Therefore, an alternative form of the master equation
is obtained:

∂

∂t
P (ω; t) = −

∑
ω′

Wωω′P(ω; t) +
∑
ω′

Wω′ωP(ω′; t). (5)

Note that the transition rates Wωω′ are no longer non-negative, and the diagonal elements Wωω

are non-positive.
As a first attempt, the exact expression for the NESS of the master equation was given by

Schnakenberg [15]. He used the graph theory to obtain the expression for the NESS. However,
its derivation contains counting complicated trees associated with a given graph. Its derivation
is lengthy. Schnakenberg’s result is practically not convenient.

After Schnakenberg, a more direct form of the NESS was given in [16, 17]. Its expression
involves the determinant of a submatrix of the matrix Wωω′ :

P st (ω) = adj(−W)ωω∑
ω′ adj(−W)ω′ω′

, (6)

where adj(A)ij is the cofactor of the matrix A for the matrix element Aij . Note that this
expression is for the case that the size of the matrix Wωω′ is finite. But it is still hard to extract
its physical meaning of the NESS.

We will give another procedure for the case near equilibrium in the following section.
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3. An expression for the NESS near equilibrium

In this section, the master equation (5) is considered. Now, we assume the detailed imbalance
relation (sometimes it is called the nonequilibrium detailed balance relation):

P(ω; t − 0)Wωω′

P(ω′; t + 0)Wω′ω
= exp[σωω′(t)], (7)

where σωω′(t) is the entropy production for one jump ω → ω′. Equation (7) is the starting
point to derive various fluctuation theorems. For instance, Hatano and Sasa derived steady state
thermodynamics of the Langevin system, and showed the fluctuation theorem and Jarzynski
(in)equality starting from equation (7) [25]. Using the Onsager–Machlup path integral and
equation (7), a work fluctuation theorem was derived for a Langevin system in [26]. In [14],
the entropy production for the master equation was examined, and equation (7) was a key
relation there. Moreover, in [27], equation (7) has been shown both at the single trajectories
and at the average level, and was confirmed in experiments.

Using equation (7), equation (5) is rewritten as

∂

∂t
P (ω; t) = P(ω; t)

∑
ω′

(exp[−σωω′(t)] − 1)Wωω′ . (8)

Equation (8) is easily solved:

P(ω; t) = C(ω; 0) exp

[∫ t

0
dt ′

∑
ω′

(exp[−σωω′(t ′)] − 1)Wωω′

]
, (9)

where C(ω; 0) will be determined later. As in the standard definition, here we set

P(ω; t) = exp[−S(ω; t)]. (10)

Thus, the statistical entropy of the probability distribution is given as a Shannon entropy:

S(t) = −
∑
ω

P(ω; t) ln P(ω; t) =
∑
ω

P(ω; t)S(ω; t). (11)

For comparison with thermodynamical entropy, equation (11) should be modified. For its
definition, see [28, 29]. In this paper, we use the definition of equation (11). Equation (9) is
rewritten as

P(ω; t) = C(ω; 0) exp

[∫ t

0
dt ′

∂P (ω; t ′)/∂t ′

P(ω; t ′)

]

= C(ω; 0) exp

[
−

∫ t

0
dt ′Ṡ(ω; t ′)

]
= C(ω; 0) exp[S(ω; 0) − S(ω; t)]. (12)

To be consistent with equation (10), it should be C(ω; 0) = exp[−S(ω; 0)]. Thus,
equation (9) is a formal (exact) solution.

For the NESS, the steady state distribution is given by

P st (ω) = exp

[
−S(ω; 0) +

∫ ∞

0
dt ′

∑
ω′

(exp[−σωω′(t ′)] − 1)Wωω′

]

= exp

[
−S(ω; 0) +

∫ ∞

0
dt ′

∑
ω′

Wωω′

∞∑
n=1

1

n!
(−σωω′(t ′))n

]
. (13)

This is the first main result, and is nothing but the exact expression of the NESS, which is
similar to the Zubarev–McLennan steady state distribution. However, equation (13) is not in
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a useful form. Thus, we consider a NESS near equilibrium. Near equilibrium, the entropy
production is small. So we can approximate as exp(−σ) ≈ 1−σ , i.e., the linear approximation
near equilibrium. Note that this linear approximation does not mean the linear approximation
in terms of the degree of nonequilibrium property, such as temperature difference in the thermal
conduction problem, chemical potential difference in the diffusion problem, and so on. This
point will be discussed later again. Then, we obtain the probability distribution,

P(ω; t) � exp

[
−S(ω; 0) −

∫ t

0
dt ′

∑
ω′

σωω′(t ′)Wωω′

]
. (14)

Near equilibrium, the steady state distribution is approximated as

P st (ω) � exp

[
−S(ω; 0) −

∫ ∞

0
dt ′

∑
ω′

σωω′(t ′)Wωω′

]

= exp

[
−S(ω; 0) −

∫ ∞

0
dt ′{�(ω; t ′) − 〈J (ω)〉}

]
, (15)

where

�(ω; t) =
∑
ω′

{S(ω′; t) − S(ω; t)}Wωω′ , (16)

and

〈J (ω)〉 = −
∑
ω′

Wωω′ ln
Wωω′

Wω′ω
. (17)

This is the second main result. �(ω; t) is the total entropy production including the
incoming entropy production flow, i.e., 1

τ
	S(ω). 〈J (ω)〉 is the entropy production

flow, i.e., 1
τ
	eS(ω). Thus, �(ω; t) − 〈J (ω)〉 is the (internal) entropy production, i.e.,

1
τ
	iS(ω) = 1

τ
(	S(ω) − 	eS(ω)). Thus, the argument of the exponential function in the

second line of equation (15) expresses the time integration of the minus of the excess entropy
production or the internal entropy production.

The averaged entropy production in the NESS is given by [15, 20]

〈σ 〉 =
∑
ω,ω′

P st (ω)Wωω′ ln
P st (ω)Wωω′

P st (ω′)Wω′ω
. (18)

This expression can be written in terms of Kolmogorov–Sinai (KS) entropy [20]:

〈σ 〉 = hR − h, (19)

where h is the KS entropy, and hR is the KS entropy for the reversed process. Since∑
ω′

σωω′(t)Wωω′ =
∑
ω′

Wωω′ ln
P(ω; t)Wωω′

P(ω′; t)Wω′ω
, (20)

thus, this quantity resembles the content inside of the sum in the right-hand side of
equation (18). This quantity can be identified with the excess entropy production in the
state ω.

Consider S(ω; t). From equation (14), we obtain

S(ω; t) = −ln P(ω; t)

= S(ω; 0) +
∑
ω′

∫ t

0
dt ′

{
Wωω′(S(ω′; t ′) − S(ω; t ′)) + Wωω′ ln

Wωω′

Wω′ω

}
. (21)
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This equation expresses the time evolution of S(ω; t). Taking time derivative of equation (21)
and noting equation (4), we have

d

dt
S(ω; t) =

∑
ω′

Wωω′S(ω′; t) − 〈J (ω)〉. (22)

If we use the matrix notation for the transition rates Wωω′ , and the vector notations for S(ω; t)

and the steady entropy production current 〈J (ω)〉, then we have

Ṡ(t) = WS(t) − J . (23)

This can be easily solved as

S(t) = eWtS(0) −
∫ t

0
ds e−W(s−t)J . (24)

In the NESS, the following condition is satisfied:∑
ω′

Wω′ωP st (ω′) = 0. (25)

Here we have set the right-hand side of equation (2) to be zero. Equation (25) implies that
there exist zero eigenvalues for the matrix W. Now we assume that at t = ∞, the state reaches
the NESS. As a result, the steady state distribution is given by P st (ω) = exp[−Sst (ω)] =
exp[−S(ω;∞)]. Thus, we have

P st (ω) � exp

[
− lim

t→∞

∑
ω′

{
(eWt )ωω′S(ω′; 0) −

∫ t

0
ds(e−W(s−t))ωω′ 〈J (ω′)〉

}]
. (26)

This is the third main result. The rank of the matrix W is smaller than its matrix size. We
assume that the matrix W has only one zero eigenvalue, and the others are negative eigenvalues,
since the diagonal elements of the matrix W have negative values (see equation (3)). The first
term in the argument of the right-hand side of equation (26) converges to the element of the
eigenvector corresponding to the zero eigenvalue, i.e., the NESS.

4. Conclusions

We have demonstrated that near equilibrium, the solution of the master equation is solved
analytically. The time evolution of the entropy and the distribution function was obtained,
and the steady state distribution near equilibrium was evaluated. To include nonlinear effects
far from equilibrium, i.e., beyond the linear approximation, one should include the nonlinear
terms (n = 2, 3, . . .) in the argument of the exponential function in the second line of
equation (13). But this task would be tedious. At present, there is no results in this direction.

We have derived the time evolution of the entropy (production) near equilibrium. We
identify the (averaged) entropy production obtained with thermodynamical entropy production
(σth = J · A, where J is the current, and A is the affinity). Due to the property of the
matrix W (i.e., zero eigenvalue and negative eigenvalues), the entropy production may decay
exponentially. Near equilibrium the affinity A is almost constant in time. Thus, the current
J should decay exponentially. This property may be observed in numerical simulation. Far
from the equilibrium case, the above observation may break down. The time evolution of the
entropy production may deviate from exponential decay by nonlinearity of the time evolution
equation of the entropy production.

The expression of equation (15) is very similar to the result of a recent attempt of
constructing steady state thermodynamics [21–23]. Now we rewrite equation (15) into the form
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of the expression derived by Komatsu and Nakagawa [22]. Noting that σωω′(t) = −σω′ω(t),
equation (15) can be rewritten as

P st (ω) � exp

[
−S(ω; 0) +

1

2

∫ 0

−∞
dt ′

∑
ω′

σω′ω(t ′)Wωω′

−1

2

∫ ∞

0
dt ′

∑
ω′

σωω′(t ′)Wωω′

]
. (27)

This equation is similar to equations (15a) and (15b) in [22]. But it should be noted that
equation (27) has some differences compared with equations (15a) and (15b) in [22]. In [22],
they derived the expression in the argument of the exponential function in terms of the degree
of nonequilibrium property, say ε, such as the temperature difference in the thermal conduction
problem or particle number difference in the diffusion problem, etc. Their expression is in the
order of ε2 in the argument of the exponential function. In equation (27), the expression is not
in terms of ε. If one expands the argument of the exponential function, namely σωω′ , in terms
of ε, then we may get an infinite power series of ε, which starts from the order of ε1. This will
be confirmed for the one-dimensional diffusion problem, which is treated in a different context
in [14]. Therefore, the result of the master equation in this paper is somewhat different from
that of the Hamiltonian system in [22]. But both expressions look similar. Thus, for master
equations, a similar discussion as for Hamiltonian systems in [23] may be possible. Finally,
we stress the following remark. To obtain equation (15) from equation (13), the condition
that our expression is valid is that (1) the nonequilibrium property is small (i.e., the entropy
production is small), and (2) the initial probability distribution is close to the NESS, because
both equations (13) and (15) involve an integral over time.

Finally one (deep) question remains. ‘Is the Zubarev–McLennan steady state distribution
for the NESS near equilibrium’? At least, for the master equation, equation (15) (i.e., the
expression near equilibrium) seems to correspond to the Zubarev–McLennan steady state
distribution [18, 19].
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